You are here

Leather processing

In an age of plastics, metals and synthetics, leather has kept its place as a product of superior quality. As a result, tanning remains an essential economic activity. Leather processing can be done at the small-scale or large-scale level, all to varying degrees of sophistication.

The tanning industry has been subject to important challenges and changes. Foremost has been the introduction of processing technologies with less impact on the environment. As the production of finished leather is concentrated in developing countries, UNIDO, together with other partners, have provided support to enhance tanning industry practices in developing countries.

Cleaner leather production technologies remain UNIDO’s main focus in the field of leather processing. Cleaner production applications include green hide and skin processing (supply of raw material from slaughterhouses without preservation, e.g. salting), water management (use minimum volume of process water), recycling (e.g. in liming) and chromium recovery (after tanning), hair saving (to reduce dissolved solids in effluent) and application of environmentally friendly chemicals (e.g. enzymes). Special attention is also given to occupational health and safety (OHS) in tanneries.

UNIDO through its Regional Programme for Pollution Control in the Tanning Industry in South-East Asia has been actively looking for solutions to tackle saline tannery effluent. The following technologies have been tested at pilot scale demonstration units (PDUs):

  • Mechanical / manual removal of excess salt from wet salted hides and skins
  • Reverse osmosis (RO) of treated tannery effluent
  • Improved (accelerated) solar evaporation
  • Recycling of floats in the beamhouse
  • Use of ultrafiltration in tannery effluent.

This report provides preliminary estimates of costs of setting up a multistage evaporation system for recovery of salt from the concentrate (reject) resulting from the Reverse Osmosis (RO) of treated effluents..

This survey prepared and presented during the 17th UNIDO Leather Panel is a follow-up to Worldwide Study of the Leather and Leather Products Industry, which was the outcome of an exhaustive survey carried out by UNIDO in the 1970s. It is intended to assist the Organization in the formulation of future assistance programmes and in detecting areas where further study of various kinds may be useful. This report assesses the worldwide prospects of the leather and leather products industry in the coming decade. It examines the major underlying trends of recent years and how they are expected to evolve in the short to medium term. In its attempt to provide a thorough picture of the leather sector, the report covers its various aspects: the availability of raw material, the tanning industry, and the manufacture of footwear and other leather products. The basic intention is to help discern prevailing trends in global trade and to support efforts to design an effective role for organizations in the industrial development arena. The findings and forecasts published here are meant to be indicative rather than definitive and to form a basis for further surveys and studies. The need to compile this report arose out of the 16th session of the UNIDO Leather and Leather Products Industry Panel held in Brazil in May 2007. The panel recommended that UNIDO undertake a comprehensive study on the future development of the world leather and leather products industry, a study that would cover demand, technology, production, and trade. Consequently, the UNIDO study provides an analysis of the contemporary demand for leather products (footwear, leather goods, gloves, leather garments, sports goods, upholstery, etc.) vis-à-vis the availability of resources (raw hides and skins, manufacturing capacities, skilled labour, knowledge, support industries, and services). It also contains information on other important aspects of the leather industry: trade statistics, the geographic distribution of production, technology developments, physical infrastructure, environmental conditions, and social aspects involved in the production of leather.

Total dissolved solids (TDS), specifically chlorides, in effluent are a major concern for its discharge into surface waters and its use for irrigation. Conventional treatment systems do not help reduce TDS in the industrial effluent. Taking advantage of the sunshine available for most part of the year, tanneries in Tamil Nadu, India, were required by the regulatory authority to segregate highly saline effluent (soak and pickle streams)  and evaporate it in solar pans. Due to very dissapointing results of evaporation in solar pans attempts have been made to accelerate the evaporation by simple means like combination of improved warming of the effluent and use of sprinklers. This paper reports on results of these pilot scale tests carried out under UNIDO Regional Programme in India during late 90's.

This short paper presented during the 14th UNIDO Leather Panel in Zlin/Czech Republic reports on the general situation, issues and methodology adopted as well as practical experience in implementation of occupational safety and health standards (OSH)  at work in tanneries under UNIDO’s Regional Programme for Pollution Control in the Tanning Industry in South East Asia in late 90-ies involving .international and local experts. For a practical OSH manual see the document Occupational Safety and Health Aspects of Leather Manufacture.

Presented publications documents UNIDO's involvement in promoting Eco-Labelling in the leather industry. Life-cycle assessments or the evaluation of the potential environmental impact of a product system from cradle to grave are fundamental features of some ecolabelling schemes and environmental management systems. Nowadays rhe environmental auditing protocol and reporting mechanism developed and maintained by the Leather Working Group aims to tackle important topical issues, and reflect improvements or changes of technology within the sector.

The essential part of any tannery waste audit is assessing the efficiency of existing operations carried out during the leather manufacturing process. Typically, tannery staff have a good idea of, and comparatively accurate figures on the waste resulting from specific operations such as fleshing, splitting, trimming or chrome tanning. Only rarely, however, they have a proper overview of the entire range of waste generated. Thus, when considering various cleaner technologies or waste treatment systems, having access to a complete computation of the overall mass balance certainly makes it easier for a tanner facing arduous choices. Dialogue with environmental authorities is also simpler if such figures are readily available. This paper attempts to provide a comprehensive computation of a mass balance and the efficiency of the leather manufacturing process for a tannery, seen as a closed entity. The calculations are deliberately based on operations in a hypothetical tannery processing bovine hides and producing upper leather for shoes. With minor exceptions (batch washing instead of continuous rinsing, splitting in lime, roller coating), it follows the conventional process.

Utilization and/or safe disposal of sludges generated in the course of effluent treatment still represents a great challenge; worldwide many methods have been explored and proposed. This report describes the attempt made under UNIDO Regional Programme in South-East Asia to test another path. The idea was to convert the hazardous tannery sludge  into an inert, physically stable mass, with very low leachability and sufficient strength to allow making building materials like nonfired bricks for fencing or for landfilling or land reclamation. Solidification  (cementation) was achieved by mixing the sludge with various materials to form a solid product hoping that immobilisation/chemical stabilisation) will also be achieved.

Conventional treatment of tannery effluents does not affect the TDS content (colloquially: salinity); they remain unsuitable for lifestock watering or irrigation which, especially in arid areas, represents a great loss of natural resource. This paper reports on successful irrigation trials with treated effluent from a CETP servicing a cluster of tanneries processing wet blue and crust leather into finished leather and with TDS not exceeding 5000 mg/l and chlorides not exceeding 900 mg/l. Eventually a plot of barren land was converted into a pleasant park-like area.This paper, based on the project implemented by a women-only team, provides information on saline resistant plants and assess their growth properties; and the impact that the continuous application of treated effluent had on the soil and ground water.

Based on new data and requests from interested users, the revised second edition of the paper Pollutants in tannery effluents was prepared drawing on technical inputs by J. Buljan, I. Král, M. Bosnić, R. Daniels. This training material is primarily intended to meet the needs of tanners and people of different profiles associated with environmental protection in the leather industry in developing countries.

The environment is under increasing pressures from solid and liquid wastes as by-products from leather manufacture and tannery effluent create significant pollution unless there has been a form of treatment before discharge.  The industry has gained a negative image in the society with respect to its pollution potential and therefore the leather processing activity is facing a serious challenge.

The paper presents the main sources of pollution and typical pollution loads generated by tanning processes adopted by the tanneries in developing countries, volume(s) of wastewater discharged, the corresponding concentrations of main pollutants as well as the the table of widely prevailing discharge standards.

In this edition the main pollutants' parameters are elaborated in great detail, together with descriptions of their negative environmental impact. Air pollution and toxicity aspects are expanded and a concise chapter on Substances of Very High Concern, SVHC ( carcinogenic, mutagenic, bioaccumulative, persistent etc.) introduced. One can also find photos of equipment used for laboratory analysis.

For the country-wise overview of discharge standards (admittedly somewhat obsolete) please refer to Part II of the first edition.

The globalization of the leather industry means that all tanners face the same problems of minimizing the environmental impact of processing and selling into the global market. Regulatory pressures oblige tanners to make continuous improvements in the processing operations. The authorities concerned and consumers look more closely whether hazardous substances such as certain preservatives, some azo dyes and Cr(VI) are present in leather and leather products. The presence of potentially harmful substances attract attention of public media with the risk of developing unfavorable perception about health safety of leather products. In that context materials imported from developing countries are especially critically judged in some reports. Closer monitoring of this aspect has revealed that leather and leather products sometimes contain some hazardous substances like Cr(VI) although only chromium compounds in the form of Cr(III) were used in the tanning process. It has been concluded that this might be result of some undesired reactions in leather itself but the cause was unclear. In this paper, in a very brief form, some results of the investigations about conditions conducive to or inhibiting generation of Cr(VI) in leather are summarized. Also, the results of a series of tests carried out on leathers received from several countries included in UNIDO Regional Programme of Pollution Control in the Tanning Industry in South-East Asia are presented.

Pages